Mathematics Methods Notes

<u>Mathematics Methods Notes</u>						
Trigonometric functions	Exponential function	Logarithmic function	Max. point			
		d_{1} 1	Sign test 2 nd derivative test,			
$\frac{d}{dx}\sin x = \cos x$	$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}\ln x = \frac{1}{x}$	x^{-} x_{0} x^{+} $d^{2}y$			
d	,		$\frac{x}{\frac{dy}{dx}} + ve 0 -ve \frac{d^2y}{dx^2} < 0$			
$\frac{d}{dx}\cos x = -\sin x$	$\frac{d}{dx}e^{ax} = ae^{ax}$	Product rule	Slope			
	dx dx dx	Form of a ln x	Stationary point			
$\frac{d}{dx}\tan x = \sec^2 x$	$d_{f(x)}$ and $f(x)$	Example 1: Differentiate $y = (x + 1) \ln x$.	point			
dx dx	$\frac{d}{dx}e^{f(x)} = f'(x) \cdot e^{f(x)}$	Since charge $y = (x + 1) \lim x$.	Min point			
d		Let $u v = \ln x$	Min. point Sign test 2 nd derivative test,			
$\frac{d}{dx}\sec x = \sec x \tan x$	Product rule	=(x+1)				
	Form of $f(x) \cdot e^x$	$\frac{du}{dx} = 1$ $\frac{dv}{dx} = \frac{1}{x}$	$\frac{dy}{dy} - ve = 0 + ve \qquad \frac{d^2y}{d^2} > 0$			
Product rule	Example 1:					
Form of a (sin/cos/ tan) x	Differentiate $y = \sqrt[3]{x} e^x$.	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	Slope			
Example 1:	$Let u = e^x \qquad v = x^{\frac{1}{3}}$	dx dx dx	point			
Differentiate $y = 15 \sin x$.		x+1				
Later AF	$\frac{du}{dx} = e^x \qquad \frac{dv}{dx} = \frac{1}{3\sqrt[3]{x^2}}$	$=\frac{x+1}{x}+\ln x$	Inflection point			
$\begin{array}{cc} Let \ u = 15 \\ du \\ \end{array} \begin{array}{c} v = sin \ x \\ dv \end{array}$			$f'''(x) = 0 / \frac{d^2y}{dx^2} = 0$			
$\frac{du}{dx} = 0 \qquad \frac{dv}{dx} = \cos x$	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	Example 2:	$\int (x) = 0 \int \frac{dx^2}{dx^2} = 0$			
	$\begin{array}{ccc} ax & ax & dx \\ & e^x & \frac{1}{2} \end{array}$	Differentiate $y = 2e^{\frac{x}{3}} \ln x$.	Inflection point			
$\frac{d}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $= 15\cos x + \sin x \ 0$	$= \frac{e^{x}}{3\sqrt[3]{x^{2}}} + x^{\frac{1}{3}} e^{x}$	Let $u v = \ln x$				
		$= 2e^{\frac{x}{3}}$	Horizontal inflection Oblique inflection			
$= 15 \cos x$	Example 2: Differentiate $y = cos^2 x e^x$.	$du 2e^{\frac{x}{3}} dv 1$	point point			
Example 2:	Differentiate $y = cos^{-}x e^{-}$.	$\frac{du}{dx} = \frac{2e^{\frac{x}{3}}}{3} \qquad \frac{dv}{dx} = \frac{1}{x}$	Conditions:			
Differentiate $y = 2x \tan x$.	Let $u v = \cos^2 x$		$ \begin{aligned} f'(a) &= 0 & f'(a) \neq 0 \\ f''(a) &= 0 & f''(a) = 0 \\ f''(a) &= 0 & f''(a) & f''(a) = 0 \\ f''(a) &= 0 & f''(a) & f''(a) & f''(a) \\ f''(a) &= 0 & f''(a) & f''(a) & f''(a) \\ f''(a) &= 0 & f''(a) & f''(a) & f''(a) \\ f''(a) &= 0 & f''(a) \\ f''(a) &= 0 & f''(a) & f''(a) \\ f''(a) &= 0 & f''(a) \\ f''$			
Let $u = 2x$ $v = \tan x$	$= e^{x}$	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$ \begin{array}{c} f''(a+) \ and \ f''(a-) \ have \ opposite \\ signs \end{array} \qquad $			
$Let u = 2x \qquad v = tan x$ $\frac{du}{dx} = 2 \qquad \frac{dv}{dx}$ $= sec^{2} x$	$\frac{du}{dx} = \frac{dv}{dx} = -2sinx \cos x$	ax ax ax				
$ax = sec^2 x$	$= e^x = -2sinx \cos x$	$=\frac{2e^{\frac{x}{3}}}{x}+\frac{\ln x}{2}\frac{2e^{\frac{x}{3}}}{x}$	Small change and rate of change			
dy dy dy dy		$=\frac{1}{x}+\frac{1}{3}$	Small change,			
$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $= 2x \sec^2 x + 2 \tan x$	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$					
$= 2x \sec^2 x + 2 \tan x$	$= e^{x}(-2 \sin x \cos x) + e^{x} \cos^{2} x$ $= -2 e^{x} \sin x \cos x + e^{x} \cos^{2} x$	Example 3:	$\frac{\delta y}{\delta x} \approx \frac{dy}{dx}$			
	$= -2 e^{-1} \sin x \cos x + e^{-1} \cos^2 x$	Differentiate $y = 3 \ln x$.	$\partial x dx$			
Form of $a^n (sin/cos/tan) x$		Let $u = 3$ $v = \ln x$	Approximation,			
Example:	Chain rule	$\frac{du}{dx} = 0 \qquad \frac{dv}{dx} = \frac{1}{x}$	$Y_{now} = Y_{old} + \delta y$			
Differentiate $y = x^3 \cos x$.	Form of <i>ae^{bx}</i>	$\overline{dx} = 0$ $\overline{dx} = \overline{x}$	$I_{new} = I_{old} + 0y$			
$Lat u = v^3$	Example 1: Differentiate $y = 5e^{-8x}$.	dy dv du	Example:			
$\begin{array}{cc} Let u = x^3 & v = \cos x \\ du & dv \end{array}$		$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	Determine the approximate percentage change of $y = 3r^2$ when r increases by 1%			
\overline{dx} \overline{dx}	Let $u y = 5e^u$	$=\frac{3}{-}$	$3x^{2} \text{ when } x \text{ increases by 1\%.}$ $\delta x = 1.01x - 1x \qquad \qquad \delta y dy$			
$= 3x^2 = -\sin x$	$Let u y = 5e^u$ $= -8x$ $\frac{du}{dx} = -8 \frac{dy}{du} = 5e^u$	x	$= 0.01x$ $\overline{\delta x} \approx \overline{dx}$			
d dv du	$\frac{du}{dx} = -8$ $\frac{dy}{du} = 5e^u$		$\delta y = 6x \times 0.01x$			
$\frac{d}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$		Chain rule				
$= x^3(-sinx) + cosx(3x^2)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	Form of $\ln(ax+b)$	$\frac{dy}{dx} = 6x \qquad \qquad \frac{\delta y}{y} \times 100$			
$= -x^3 sinx + 3x^2 cosx$		Example 1:	$\frac{1}{\gamma} \times 100$			
<u>Chain rule</u>	$= 5e^u \times -8$ $= -40e^{-8x}$	Differentiate $y = \ln(e^{2x} + 2)$	$=\frac{0.06x^2}{3x^2}\times 100$			
Form of (sin/cos/tan)ax		2).	$= 2\%^{3x^2}$			
Example: Differentiate $y = sin 3x$.	Example 2:	Let $u y = \ln u$				
$\int \int $	Differentiate $y = e^{4x}$.	$=e^{2x}+2$ dy dy 1	Example 2:			
Let $u = 3x$ $y = \sin u$	Let $u = 4x$ $y = e^u$	$\frac{du}{dx} = 2e^{2x} \qquad \frac{dy}{du} = \frac{1}{u}$	A drop of methyl blue solution is dripped into a bowl of			
$\frac{du}{dx} = 3$ $\frac{dy}{du} = \cos u$	$\frac{du}{dx} = 4 \qquad \frac{dy}{du} = e^u$		water and small circle ripples are formed continuously. Given that the radius of ripple increases at rate of			
ax du	$\overline{dx} = 4$ $\overline{du} = e^{-t}$	$\frac{dy}{dt} = \frac{dy}{dt} \times \frac{du}{dt}$	$0.5 \ cms^{-1}$, find the rate of change of the area of ripple			
$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	dy dy du	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= \frac{\frac{2e^{2x}}{e^{2x}+2}}{e^{2x}+2}$	in terms of π when the diameter is 0.4 cm.			
$\frac{dx}{dx} = \frac{du}{du} \times \frac{dx}{dx}$ $= 3\cos u$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$=\frac{1}{e^{2x}+2}$	$\begin{array}{c} A = \pi r^2 \\ dA \end{array}$			
$= 3\cos u$ $= 3\cos 3x$	$= 4 \times e^u$ $= 4e^{4x}$	Example 2:	$\frac{dA}{dr} = 2\pi r$			
	- TC	Example 2: Differentiate $y = \ln(x + y)$	dA dA dr			
Form of $sin^n / cos^n / tau^n u$	Form of $ae^{f(x)}$	$2x^2$).	$\frac{dt}{dt} = \frac{dr}{dr} \times \frac{dt}{dt}$ $= 2\pi r (0.5)$			
tan ⁿ x Example 2:	Example:		$=2\pi(0.4\div 2)(0.5)$			
Differentiate $y = sin^2 x$.	Differentiate $y = e^{cosx}$.	$Let u y = \ln u = x + 2x^2$	$= 0.2\pi \ cm^2 s^{-1}$			
	Let $u v = e^u$	du dy 1				
Let $u y = u^2$	$= \cos x$	$\frac{1}{dx}$ $\frac{1}{du} = \frac{1}{u}$				
$= \sin x$ $du \qquad dy$	$\frac{du}{dx} = -\sin x \qquad \frac{dy}{du} = e^u$	= 1 + 4x				
$\frac{du}{dx} = \cos x \qquad \frac{dy}{du} = 2u$	dx du	dy dy dy				
		$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$				
$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	dy dy du	$=\frac{\frac{dx}{1+4x}}{\frac{1+4x^2}{x+2x^2}}$				
$= 2u \cos x$ $= 2\sin x \cos x$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$-x + 2x^2$				
$= 2sin x \cos x$ $= sin 2x$	$= -\sin x \times e^{u}$ $= -\sin x e^{\cos x}$					
	001070 0					

Differentiation

dvds $\left[x\right]_{a}^{b} = F(b) - F(a)$ dt dtv ital theorem of te $\int_0^1 x^2 + e^x dx$. in terms of e. v a $\left[\frac{x^{3}}{3} + e^{x}\right]_{0}^{1}$ $[\frac{1}{3} + e] - [\frac{0}{3} + e^0]$ Displacement Example: A particle accelerates at 5 ms^{-2} which $\frac{2}{2} + e$ is constant along the s-axis. It has a velocity of $-1 ms^{-2}$ at the start of the journey. Find the displacement of the [t)] dt = f(x)particle within the range of time, $2 \leq t$ ≤ 4. $t^2 + 2$] dt. v(t) = -1 + 5t $S = \int_{0}^{4} v dt$ $= x^{2} + 2$ $=\int_{1}^{4} -1 + 5t \, dt$ $\frac{5t^2}{2}_{2}_{2}^{4}$ = [-t + 28 m] $= f[g(x)] \times g'(x)$ Distance dt. Example: The velocity of a moving particle is $(x+1) \times \frac{d}{dx}(x+1)$ equated by $v = 2t^3 + 3t^2 - 2t$. Find the total distance travelled by particle *x* + 1 from its origin point till t = 1s. $S = \int_{0}^{1} |v| dt$ al theorem of calculus limits of integration $= \int_{0}^{0.5} |2t^3 + 3t^2 - 2t| dt + \int_{0.5}^{1} 2t^3 + 3t^2$ = 0.09375 + 0.59375 $\int_t^{3t} x^3 \, dx.$ $\int_{0}^{3t} x^{3} dx + \frac{d}{dt} \int_{t}^{0} x^{3} dx$ $\int_{0}^{3} \times \frac{d}{dt} (3t) - \frac{d}{dt} \int_{0}^{t} x^{3} dx$ $(t^{3}) - t^{3}$ = 0.6875 mdt = f(a) - f(b)Velocity dt. Example: The velocity function of a moving particle is given by $v(t) = e^{\sin 2t}$, find the velocity of the particle at t =2 s. Do not evaluate your answer. $v(t) = e^{\sin 2t}$ nearity of definite $v(2) = e^{\sin 2(2)}$ $= e^{\sin 4} m s^{-1}$ Acceleration Example: $\int f(x)dx$ A moving particle travells along a $f(x)dx + \int_{b}^{c} f(x)dx$ by $v = 3t^2 + 6t$. Determine the $k\int_{a}^{b}f(x)dx$ 2. $dx = \int_{a}^{b} f(x) dx$ $\pm \int_{a}^{b} g(x) dx$ $v = 3t^{2} + 6t \quad a(t) = 6t + 6$ a(2) = 6(2) + 6 $a = \frac{dv}{dt} = 18 \, ms^{-2}$

Rectilinear motion

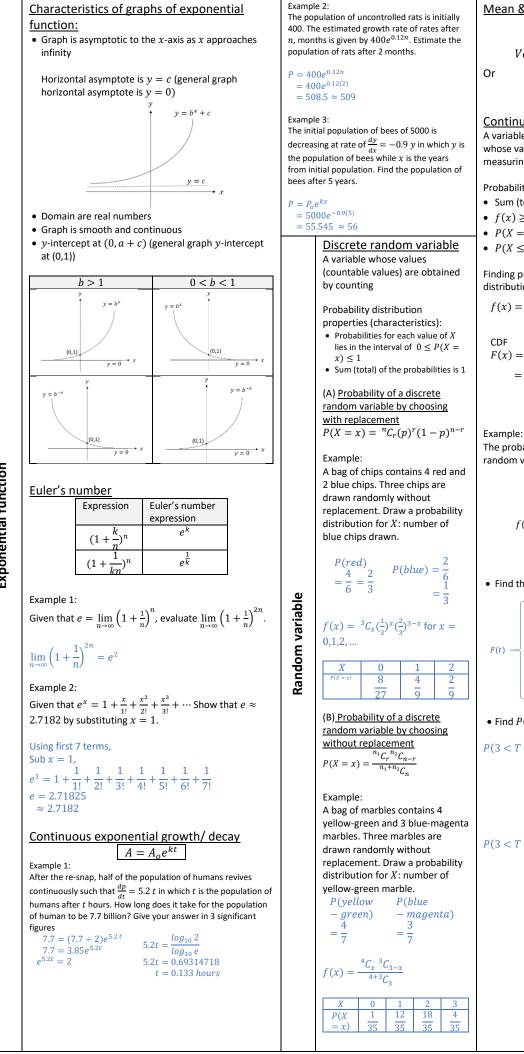
Exact values of trigo. ratio

	0	$30/\frac{\pi}{6}$	$45/\frac{\pi}{4}$	$60/\frac{\pi}{3}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\overline{1}}{2}$
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

	$90/\frac{\pi}{2}$	180/π	$270/\frac{3\pi}{2}$	360/2π
sin	1	0	-1	0
cos	0	$^{-1}$	0	1
tan	-	0	-	0

Trigonometric identities

 $sin(A \pm B) = sin(A) cos(B) \pm sin(B) cos(A)$


 $\cos(A \pm B) = \cos(A)\cos(B) \mp \sin(A)\sin(B)$ $\tan(A \pm B) = \frac{\tan(A) \pm \tan(B)}{1 \mp \tan(A) \tan(B)}$

```
Economic application of
differentiation
```

Application	Function	
Production cost	C(x)	
Revenue	R(x)	
Profit	P(x) = C(x) - R(x)	
Break even	C(x) = R(x)	
Average cost	c(x)	
	x	
Marginal Profit	P'(x)	
Marginal Revenue	R'(x)	
Marginal cost	C'(x)	
Approximate cost of		
producing one more	C''(x)	
unit after x th unit has		
been produced and		
sold		
Maximum profit	C'(x) = R'(x)	
	or	
	P'(x)	

$$\frac{d}{dt}(2t^2 + t)dt = [2(x^2)^2 + x^2] - [2\pi^2]$$
$$= 2x^4 + x^2 - 2\pi^2 - \pi$$

straight path and passes through a fixed point. Its velocity, $v ms^{-1}$ is given acceleration of the particle when t =

Mean & variance of DRV $E(X) = \sum x P(X = x)$ $Var(X) = \sum (x - \mu)^2 \times P(X = x)$ $Var(X) = E(X^{2}) - [E(X)]^{2}$

Continuous random variable

A variable which takes any values over intervals and whose values (measurable values) are obtained by measuring.

Probability density function (characteristics):

- Sum (total) of the probabilities is 1: $\int_{h}^{a} f(x) dx = 1$
- $f(x) \ge 0$ for interval $a \le x \le b$
- P(X = k) = 0 which is same as $\int_{k}^{k} f(x) dx = 0$
- $P(X \le k) = P(X < k) + P(X = k) = P(X < k)$

Finding probability density function given a cumulative distribution function

$$f(x) = \frac{d}{dx}F(x)$$

$$CDF$$

$$F(x) = P(X \le x)$$

$$= \int_{-\infty}^{x} f(x) dx$$

$$\int_{b}^{a} f(x) dx$$

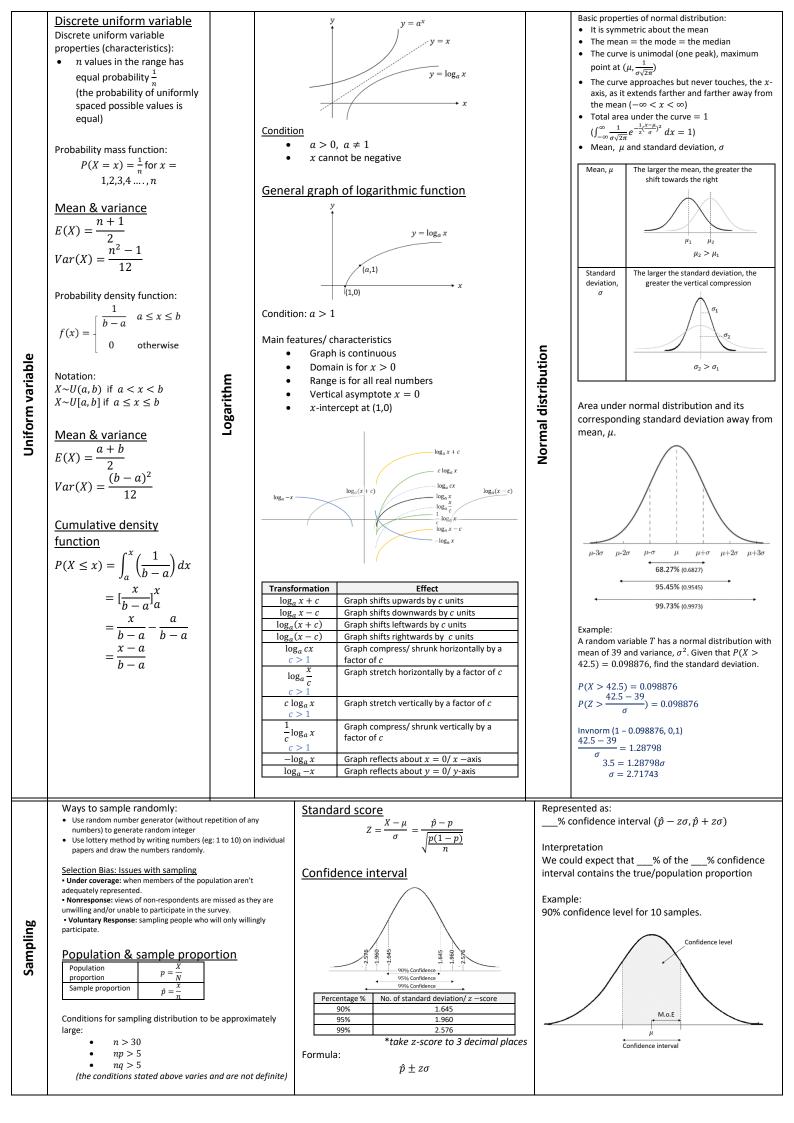
$$\int_{b}^{a} f(x) dx$$

The probability density function f of a continuous random variable T is given by,

> $\frac{1}{24}t$ $0 \le t \le 4$ $f(t) = \frac{1}{4} - \frac{1}{48}t$ $4 \le t \le 12$

Otherwise 0

• Find the cumulative distribution function for *T*.


$$F(t) = \begin{cases} 0 & t < 0 \\ \int \frac{1}{24}t \, dt = \frac{t^2}{48} & 0 \le t \le 4 \\ \int_4^t \frac{1}{4} - \frac{1}{48}t \, dt + \int_0^4 \frac{t}{24}dt = \frac{t}{4} - \frac{t^2}{96} - \frac{1}{2} & 4 \le t \le 12 \\ 1 & t > 12 \end{cases}$$

• Find P(3 < T < 12).

$$P(3 < T < 12) = F(12) - F(3)$$

= $\frac{12}{4} - \frac{(12)^2}{96} - \frac{1}{2} - \frac{3^2}{48}$
= $\frac{13}{16}$
or

$$P(3 < T < 12) = \int_{4}^{12} \frac{1}{4} - \frac{1}{48}t \, dt + \int_{3}^{4} \frac{t}{24} dt$$
$$= \frac{13}{16}$$

Exponential function

